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Ablation Studies
In this supplementary section, we present corroborating
experiments and ablation studies that validate several of our
design choices.

The Efficacy of Frequency-based Feature Decomposi-
tion Encoders. To verify the efficacy of frequency-based
feature decomposition, we replaced all encoder architecture
with VGG-19 (Simonyan and Zisserman 2014) and com-
pared it to the default model. In order to further validate the
efficacy of the number of Octave Convolutions (OctConvs)
in a single layer, models with three and five OctConvs are
also examined. Other architectural designs, such as a gener-
ator, retain their default configurations. Our feature decom-
position encoders with three OctConvs in each layer perform
the best at all spatial resolutions, as shown in Table 1. In this
paper, we employed the AesFA model with two layers, each
consisting of three OctConvs in both content and aesthetic
feature encoders.

Resolution Method (Encoder) Style Loss (↓) LPIPS (↓) SSIM (↑) Time (↓)
2562 VGG-19 2.618 0.519 0.096 0.016

AesFA (3 OctConvs) 0.692 0.368 0.417 0.016
AesFA (5 OctConvs) 0.672 0.368 0.408 0.023

5122 VGG-19 1.936 0.513 0.127 0.015
AesFA (3 OctConvs) 0.314 0.365 0.371 0.017
AesFA (5 OctConvs) 0.330 0.366 0.374 0.022

10242(1K) VGG-19 1.615 0.575 0.136 0.016
AesFA (3 OctConvs) 0.283 0.392 0.405 0.020
AesFA (5 OctConvs) 0.292 0.392 0.405 0.025

20482(2K) VGG-19 1.597 0.561 0.143 0.017
AesFA (3 OctConvs) 0.404 0.435 0.378 0.020
AesFA (5 OctConvs) 0.442 0.440 0.384 0.023

Table 1: The Effectiveness of Octave Convolutions (Oct-
Convs) in encoder architecture. Our content and aesthetic
feature encoders, which are comprised of multiple Oct-
Convs, outperform encoders whose architecture was re-
placed by VGG-19.

Ablation studies on Octave Convolutions. Our key idea
was to decompose the input image into two distinct com-
ponents to better encode aesthetic features and synthesize
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the aesthetically enhanced image. As shown in Figure 2 and
Figure 3, our method shows excellent decomposition abil-
ity and proves that AesFA have notable ability in the fea-
ture disentanglement, resulting in better stylization quality.
In addition, compared to the results of the models without
the octave convolutions, the models with the octave convo-
lutions show higher image quality with less vertical artifacts
behind (see Figure 2).

To find the optimal alpha value (α), three alpha values,
0.25, 0.5 and 0.75 are examined. The α = 0.5 setting pro-
duces a well-balanced feature decomposition between the
two frequency images and shows pleasing stylization results
(see Figure 3 and Table 2). We observe that this trend was
maintained at other resolutions as well.

Method GFLOPS (↓) Storage(GB) (↓) Params (106) (↓) Time (↓)
No Oct 1537.547 8.412 4.671 0.013
α = 0.25 1146.603 6.424 3.601 0.020

α = 0.50 (main) 800.424 3.438 3.221 0.020
α = 0.75 575.045 3.330 3.601 0.019

Table 2: Efficiency comparison with no octave convolu-
tions and octave convolutions in different alpha values. The
α = 0.5 setting produces a well-balanced output between
the efficiency and the performance. Storage is measured in
PyTorch model. GFLOPs and Time are measured when the
content and style image are both 2K (2048× 2048) images.
All tests were conducted on a single NVIDIA A100(40G)
GPU and under identical iterations.

Effect of Adaptive Octave Convolution (AdaOct). In
Table 3, we show the quantitative comparisons between the
model with and without AdaOct. The model with AdaOct
outperforms in terms of stylizations.

Method Style Loss (↓) LPIPS (↓) SSIM (↑) Time (↓)
No AdaOct 0.465 0.436 0.399 0.019

AdaOct 0.427 0.435 0.381 0.020

Table 3: Quantitative comparison between the model with
and without Adaptive Octave Convolution (AdaOct) at 2K
(2048× 2048) resolutions.



Figure 1: Additional qualitative comparison in 4K (4096 × 4096) resolution. Overall, our approach can generate aesthetically
more realistic and pleasing results for arbitrary styles.

Figure 2: The stylization outputs with no octave convolutions and octave convolutions in different alpha values. Alpha values
(α) denotes the ratio of the number of low-frequency channels to the total-frequency channels.

Aesthetic Feature Descriptor Dimensions. In Table 4,
we show how changing the dimensions of aesthetic feature
descriptor can affect the resulting stylizations.

More Experimental Results
Additional visual results at various resolutions. More
experimental visual results are presented in Figure 1,
Figure 4, and Figure 5.

Quantitative Comparisons at 512-pixel resolutions.
Table 5 shows that our proposed method shows quantita-
tively promising results compared to the state-of-the-art
NST techniques at 512 resolutions.

Quantitative Comparisons in terms of Content Per-
ceptual Loss. Table 6 shows the quantitative comparison of
content perceptual loss among various NST algorithms.

Video Style Transfer and Video Style Blending. Fig-
ure 6 shows qualitative comparisons on video style transfer

at 2K resolutions. The first row shows several video frames
and the style image. The rest of the rows show the stylization
results by various algorithms. Our results can yield the best
video results in terms of high consistency and aesthetic fea-
tures (e.g., colors, and textures). Figure 8 shows video style
blending results by AesFA. The tones from the low-style im-
age and the texture and structure of the high-style image are
well-transferred to the output image.

Societal Impacts
Positive impacts. This study may be useful to various types
of people. For example, researchers with a neural style trans-
fer interest might be motivated by our findings to create
some innovative and effective techniques in the future. Also,
artists can benefit from our model, as they can use the cre-
ative illustrations generated by our model as a springboard
for their own ideas.

Negative impacts. Possible drawbacks include the possi-
bility that the proposed method could replace some human
tasks or be abused to produce an undesirable outcome.



Figure 3: The feature decomposition experiments with dif-
ferent alpha values.

Figure 4: Additional visual results generated by AesFA.

Limitations
Despite its impressive performance, AesFA has certain lim-
itations. To begin, the results by AesFA are sensitive to the
weighting hyper-parameters for each loss, often resulting in

Figure 5: Additional Style Blending images in 256 image
resolution.

Resolution (px) Dimensions (C ×H ×W ) Style Loss (↓) LPIPS (↓) SSIM (↑) Time (↓)
2562 (256, 3, 3) 0.692 0.368 0.417 0.016

(256, 5, 5) 0.742 0.371 0.407 0.016
(256, 7, 7) 0.736 0.369 0.384 0.019

5122 (256, 3, 3) 0.314 0.365 0.371 0.017
(256, 5, 5) 0.346 0.365 0.364 0.016
(256, 7, 7) 0.364 0.358 0.348 0.018

10242(1K) (256, 3, 3) 0.283 0.392 0.405 0.020
(256, 5, 5) 0.319 0.395 0.386 0.018
(256, 7, 7) 0.362 0.384 0.371 0.020

20482(2K) (256, 3, 3) 0.404 0.435 0.378 0.020
(256, 5, 5) 0.462 0.437 0.361 0.019
(256, 7, 7) 0.552 0.438 0.345 0.020

Table 4: Quantitative comparison with different aesthetic
feature descriptor dimensions at 2K (2048 × 2048) resolu-
tions. C, H, and W represent the channel, height, and width
of the feature, respectively. The aesthetic feature descriptor
with dimensions of (256, 3, 3) performs the best.

Resolution (px) Method Style Loss (↓) LPIPS (↓) SSIM (↑) Time (↓) Pref. (↑)
5122 AdaConv (2021) N/A N/A N/A N/A -

AdaIN (2017) 0.355 0.364 0.253 0.012 8.54
MicroAST (2023) 0.624 0.372 0.381 0.009 13.27

EFDM (2022) 0.340 0.371 0.240 0.012 4.41
AdaAttn (2021) 0.582 0.405 0.429 0.041 4.72
Aes-UST (2022) 0.411 0.386 0.372 0.022 16.46
IECAST (2021) 0.592 0.390 0.349 0.020 8.84
StyTr2 (2022) 0.306 0.378 0.423 0.097 11.08
AesFA (Ours) 0.314 0.365 0.371 0.017 29.49

Table 5: Quantitative comparison with the various state-of-
the-art NST algorithms at 512 pixel resolutions. ”N/A” rep-
resents ”Not Applicable at this resolution” and the unit for
time is second/image.

over-stylized output (e.g., the repetitive style patterns on the
backgrounds). However, this could be mitigated by carefully
adjusting the weighting hyper-parameters. Besides, the ver-
tical line-shape artifacts alongside the images are often ob-
served (see Figure 7). These artifacts appear in the AdaConv



Figure 6: The qualitative video style transfer comparisons with various SOTA NST algorithms.

Resolution (px) AdaConv AdaIN MicroAST EFDM AdaAttn Aes-UST IECAST StyTr AesFA (Ours)

256 5.747 6.466 5.895 6.849 5.941 5.517 5.681 6.106 6.241

512 N/A 4.207 3.492 4.453 3.519 3.259 3.478 3.703 4.132

1024 (1K) N/A 3.223 2.807 3.494 2.945 2.606 2.670 2.679 3.277

2048 (2K) N/A 3.267 2.590 3.504 OOM 2.874 OOM OOM 3.247

4096 (4K) N/A 2.470 2.071 2.652 OOM OOM OOM OOM 2.434

Table 6: Quantitative comparison in terms of content percep-
tual loss among various NST algorithms. ”N/A” and ”OOM”
represent ”Not Applicable at this resolution” and ”Out of
Memory”, respectively. The unit for time is second/image.

(Chandran et al. 2021) as well. We reason that these appear
because the content features are being convolved directly
with the predicted aesthetic feature-aware kernels and bi-
ases. Also, the upsampling operations could be the ones that
create these artifacts. The weighting hyper-parameters could
be fine-tuned to solve this problem.

Involved Assets
Existing assets that we used in this work mainly include:
1) the codes of AdaConv (Chandran et al. 2021), AdaIN
(Huang and Belongie 2017), MicroAST (Wang et al. 2023),
EFDM (Zhang et al. 2022), AdaAttn (Liu et al. 2021), Ae-
sUST (Wang et al. 2022), IECAST (Chen et al. 2021),
StyTr2 (Deng et al. 2022) and 2) the MS-COCO dataset (Lin
et al. 2014), WikiArt dataset (Phillips and Mackintosh 2011)
and the images from pexels.com. We report their URLs and
licenses in the following,

• AdaConv: https://github.com/RElbers/ada-conv-pytorch,
MIT License.

• AdaIN: https://github.com/naoto0804/pytorch-AdaIN,
MIT License.

• MicroAST: https://github.com/EndyWon/MicroAST,
MIT License.

• EFDM: https://github.com/YBZh/EFDM, MIT License.
• AdaAttn: https://github.com/Huage001/AdaAttN,

Apache-2.0 License.
• AesUST: https://github.com/EndyWon/AesUST, MIT

License.
• IECAST: https://github.com/HalbertCH/IEContraAST,

MIT License.
• StyTr2: https://github.com/diyiiyiii/StyTR-2.git, we

were unable to find its license.
• MS-COCO: https://cocodataset.org/#download, we were

unable to find its license.
• WikiArt: https://www.kaggle.com/c/painter-by-

numbers, we were unable to find its license
• pexels.com: https://www.pexels.com/, Pexels License.

Note that MS-COCO, WikiArt and pexels.com have been
widely used in a lot of existing works, and pexels.com are
only used to get ultra-high resolution images (e.g., 4K). To
the best of our knowledge, they do not include any per-
sonally identifiable information or offensive content. In this
study, a total of 60,000 images from MS-COCO and 26,689



Figure 7: Over-stylized output and the artifacts examples generated by AesFA and AdaConv.

Figure 8: The video style blending result by AesFA.

images from WikiArt are used for training. A representative
subset of each dataset is illustrated in Figure 9. For fair com-
parisons, all existing algorithms are re-trained using these
datasets with the respective author-released codes and de-
fault configurations.
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