
We thank all reviewers for their constructive comments to
which we respond below.

To R2: About the differences between the MicroAST
and the proposed method. Our work differs from Mi-
croAST in three aspects: 1) AesFA processes images at
different spatial frequencies to better extract aesthetic fea-
tures, whereas MicroAST relies on standard convolution.
2) AesFA predicts “aesthetic feature-aware kernels and bi-
ases” in a depthwise-separable manner, preserving spatial
characteristics and facilitating modulation based on style, in-
cluding correlations across input channels and frequencies.
In contrast, MicroAST relies on summary statistics, which
may not adequately capture aesthetic features. 3) Inspired by
hard negative mining, we propose a new contrastive learning
method for aesthetic features, using the k-th nearest nega-
tive samples to the stylized output. In contrast, MicroAST
employs all negative samples in a mini-batch, leading to in-
efficient training, particularly with ultra-high resolutions.

Figure 1: The granular control of aesthetic style attributes in 4K
(4096) resolution. Magnify the image to see the details.

To R3: About the granular control over the defined
style attributes. Spatial control is also coveted by users
who wish to modify an image by applying different styles
to various regions of the image. Fig. 1 shows an example
of spatially controlling the stylization in 4K resolution us-
ing AesFA. A set of masks is additionally required. We ex-
plore finer aesthetic style control by encoding style images
into various frequencies, enabling users to blend content and
style without additional resources. For example, in Fig. 9 in
the main text, we show the style blending, i.e., using the
low-frequency and high-frequency style information from
different images. We can see that the style transferred im-
ages keep the color information from the low-frequency im-
age and change the texture information based on the high-
frequency image. This could also be successfully adapted to
the video style transfer. Additional result images are in sup-
plementary materials.

To R5: About the motivation behind the frequency
division processing of images and its effectiveness. Vi-
sual information is conveyed across various frequencies,
with higher frequencies carrying fine details like texture and
edges and lower frequencies encoding global structures such
as colors. Our results show that disentangling information
across different frequencies indeed helps extract richer vi-
sual information. It also enhances the stylization by trans-
ferring different aesthetic features to its corresponding fre-
quency band. The effectiveness of this frequency division
strategy is illustrated in Tab. 1, Tab. 2, and Tab. 3 of supple-
mentary materials.

To R5: About the difference between our proposed
method and the WCT2 (Yoo et al. 2019) and Lap-
Style (Lin et al. 2021). Thanks for pointing out the re-

lated works. The primary goal of WCT2 is to achieve pho-
torealistic style transfer. To achieve photorealism, a model
must apply the style to the content while preserving the in-
tricate details of the image. Therefore, WCT2 aims to re-
tain high-frequency information to the greatest extent possi-
ble. However, the ’aesthetic style’ encompasses both struc-
tural information and color information. For instance, in
Fig.2 (a), style can be expressed not only by color but
also by structural elements such as swirling thick lines, and
these aesthetic characteristics are conveyed through differ-
ent frequencies within the image. Thus, transferring it to the
contents shall accompany both changes in high- and low-
frequency features. Similarly, LapStyle aims to the artistic
style transfer, but it requires an additional discriminative net-
work, and they do not use a frequency division strategy to
encode the style but rather use it to generate stylized im-
ages using the style features encoded by a pre-trained VGG
network. We evaluated LapStyle in 256 resolution and get:
VGG style loss of 1.412, LPIPS of 0.392, and inference
time of 0.030s (the lower the better; Ours: 0.692, 0.368, and
0.016s, respectively).

Figure 2: The qualitative comparison between ours and LapStyle.

To R5: Capturing spatial information related to style
representations. Departing from the previous approaches
(e.g., AdaConv) that utilize fully connected layers at the end
to compute the spatially invariant style based on the input
features, we chose to omit the fully connected layers to re-
tain the spatial information related to aesthetic character-
istics. Furthermore, previous approaches transfer a simple
pair of global statistics (e.g., mean, variance) from the style.
Our proposed module, AdaOct, effectively transfers 3D aes-
thetic kernels and biases that encode richer structural and
statistical characteristics to the contents. By employing this
approach, our model maintains the integrity of spatial infor-
mation, while also establishing correlations among features
across different input channels and frequencies.

To R5: Inference time. When dealing with higher reso-
lutions, the inference time of AesFA marginally increases.

Image resolutions 2562 5122 10242 20482(2k) 40962(4k)

Inference time 0.01559 0.01725 0.01951 0.01972 0.02033

Table 1: Inference time for AesFA with different test image
resolutions. The unit is sec/image.

To R5: The detailed explanations of Figure 9 in the
main text. Figure 9 shows the style blending, i.e., using
the low- and high-frequency style information from differ-
ent style images. Sub-figures (a)-(d) show different combi-
nations of origins for low- and high-frequency style infor-
mation. For instance, “(b) Low-1 / High-2” indicates that we
use the low-frequency style information from image “1” and
the high-frequency style information from image “2”.

To R5: Notation. Thank you for pointing out these issues.
We thoroughly checked and revised the manuscript.


